Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture

نویسندگان

  • T Kinashi
  • K H Lee
  • M Ogawa
  • K Tohyama
  • K Tashiro
  • R Fukunaga
  • S Nagata
  • T Honjo
چکیده

We are interested to know whether expression of a lineage-specific growth factor receptor is deterministic to lineage commitment during hematopoiesis. For this purpose, we introduced the human c-fms gene into the multipotential stem cell clone LyD9 and two myeloid progenitor clones, L-GM3 and L-G3, cells that differentiate in response to granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte (G)-CSF, respectively. Although LyD9 cells have differentiation potential to become macrophages, c-fms transfectants of LyD9 and L-GM3 cells did not differentiate in response to human macrophage (M)-CSF. However, c-fms transfectants of L-G3 cells differentiated to neutrophils in response to human M-CSF. These results indicate that the M-CSF receptor requires a specific signal transduction pathway to exert its differentiational and proliferative effects. Furthermore, the M-CSF receptor can convey a granulocyte-type differentiation signal possibly by cooperating with the G-CSF receptor signal transduction pathway. The c-fms-transfected LyD9 cells as well as the original LyD9 cells differentiated predominantly into GM-CSF- and G-CSF-responsive cells by coculturing with PA6 and ST2 stromal cells, respectively. The results indicate that differentiation lineage is not affected by premature expression of the M-CSF receptor. Instead, the stromal cell used for coculture apparently controls lineage-selective differentiation of the multi-potential stem cell line.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different stromal cell lines support lineage-selective differentiation of the multipotential bone marrow stem cell clone LyD9

An interleukin 3-dependent multipotential stem cell clone, LyD9, has been shown to generate mature B lymphocytes, macrophages, and neutrophils by coculture with primary bone marrow stromal cells. We report here that coculture with the cloned stromal cell lines PA6 and ST2 can support differentiation of LyD9 cells predominantly into granulocyte/macrophage colony-stimulating factor (GM-CSF)- and ...

متن کامل

Induction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating factor (GM-CSF)

Background: Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and dou...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat

Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...

متن کامل

Changes in hematopoiesis-supporting ability of C3H10T1/2 mouse embryo fibroblasts during differentiation.

To investigate the functional change of stromal cells along with differentiation, we used a differentiation-inducible mouse embryo fibroblast cell line, C3H10T1/2 (10T1/2). Stably determined preadipocyte and myoblast cell lines were established after a brief exposure of 10T1/2 cells to 5-azacytidine. These cell lines terminally differentiated into adipocytes and myotubes, respectively, under ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 173  شماره 

صفحات  -

تاریخ انتشار 1991